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Abstract-This paper is directed toward establishing general characteristics of continuum stress-plastic strain
relations from Schmid's Law of plastic slip in individual crystal grains. To this end certain theoretical results
obtained by Lin are reaffirmed through a rigorous derivation, and the principle of maximum plastic work is
extended to small elastic-plastic strains in an isotropic polycrystalline aggregate. It is shown that the macroscopic
incremental plastic strain vector over a unit volume of a fine-grained solid is strictly normal to a yield surface
in macrostress space only if the individual crystals are elastically isotropic. The resulting equations for poly­
crystalline solids are contrasted with those obtained from certain stability postulates and thermodynamic
foundations in continuum plasticity, and general features of similarity are discussed.

l. INTRODUCTION

IN parallel with the development ofthe mathematical theory ofplasticity ofstrain-hardening
solids, several investigators have pursued what might be termed a physical theory of
plasticity--that is, the prediction of the behavior of a polycrystalline metal based on the
experimentally determined stress-strain law of individual crystal grains. Taylor, after
early experimental work with his associates on single crystals of aluminum [1-4],
established analytically a close upper bound on the stress-strain curve ofa tensile specimen
[5,6] by neglecting the elastic strains and assuming a uniform plastic strain field throughout
the aggregate. Taylor's analytical results were rederived by Bishop and Hill [7,8] and further
discussed by Bishop [9] and Taylor [10]. This assumption of homogeneous plastic strain
corresponds to a kinematically admissible field in an aggregate of rigid-plastic crystals
but not to a statically admissible one, since all the equilibrium conditions between grains
are not satisfied. Lin [11] extended Taylor's analysis by considering the elastic strains of
the individual crystals and assuming uniform total strain throughout, a procedure which
also leads to an upper bound. Budiansky, Hashin, and Sanders [12] relaxed the condition
of uniform aggregate strain and accounted for equilibrium of a slipped crystal surrounded
by grains that are still elastic by using an inclusion analysis given by Eshelby [13]. Interac­
tion between slipped crystals was treated in an approximate manner by Kroner [14] and
by Budiansky and Wu [15]; additional calculations were made by Hutchinson [16,17].
Quantitative evaluations of aggregate behavior that satisfy all equilibrium and continuity
conditions have been given for isotropic crystals by Lin and his associates [18 through 25].

In addition to the studies directed toward obtaining quantitative results for poly­
crystalline aggregates, several significant investigations have been devoted to establishing
the general characteristics of continuum stress-plastic strain relations based upon the
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same starting point (Schmid's Law for plastic slip in the individual crystal grains). Bishop
and Hill [7] established a principle of maximum plastic work for a slipped crystal and
extended this to a rigid~plastic polycrystalline aggregate, obtaining a relation identical to
one of the consequences of Drucker's stability postulate [26,27]. Lin [28] discussed the
significance of the elastic properties of the crystals in the overall aggregate behavior and
obtained several important results related to the theoretical concepts of normality and the
plastic potential. Subsequent theoretical papers concerned with the evolution ofcontinuum
(or macro) behavior from crystalline (or micro) behavior include those of Mandel [29],
Hill [30-32J, and Axelrad and Yong [33].

The present paper rigorously rederives and reaffirms the theoretical conclusions of
Lin [28J and extends Bishop and Hill's principle of maximum plastic work [7] to an
aggregate of elastically isotropic crystals, thereby proving convexity of the rna .roscopic
yield surface for small elastic-plastic strains. In addition, the equations for polycrystalline
aggregates are related to and compared with certain results from the continuum theories
of plasticity.

2. MICROSCOPIC STRESS-STRAIN RELATIONS IN THE CRYSTAL

Consider a unit cube subjected to a macroscopic state of stress "ij applied as uniform
surface traction (Fig. 1). This element represents the smallest differential volume stressed
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FlO. 1. Plastic slip in crystal grain of polycrystalline aggregate.

in a continuum sense in a finite body subjected to the uniform stress state "ij' The unit
cube itself is inhomogeneous and contains a large number of crystal grains that have
various orientations. The (generally) inhomogeneous microscopic stress state within the
cube is denoted as 'u- The elastic and plastic components of the differential macroscopic
small-strain tensor f:ij are defined in terms ofthe components of the differential microscopic
strain tensor ~ij as

dEij = r (d~ij)dV',
Jv '

(1)

where the integration is over the unit cube. The macroscopic deformation is required to be
uniform throughout the assumed homogeneous continuum. Hence, the distribution and
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orientation of crystals (and the microscopic strain distribution) are taken to be identical
in all cubes.

The incremental strain-stress relation within an individual crystal grain having n slip
systems is

(2)

The Cijkl are the elastic compliances of the crystal (which may be anisotropic) and
d~W) is the increment in plastic strain caused by an incremental slip dyap- in slip system exfJ
(ex denoting the normal to the slip plane and fJ the direction of slip). The summation is
taken over all the n slip systems of the crystal, several of which, of course, may not be active.
For a single slip in slip system exfJ, there are only two nonzero incremental plastic-strain
components in the Cartesian coordinate system that coincides with the directions ex and fJ:

(3)

where d}'ap is the incremental plastic shear detrusion and du~ is the incremental microscopic
displacement in direction fJ due to slip in the exfJ system. Thus, from tensor transformation
laws

(4)

The nai are the direction cosines between the ex, fJ coordinate system in the crystal and the
Xi coordinate system of the unit cube. Superimposing the contributions of the various slip
systems in the case of multiple slip,

(5)

Similarly, the total incremental plastic strain in a slip system i5YJ is (with summation
on repeated indices i,j)

dyg~ = 2niJin~j d~iJ = I: (niJinain~jnpj + niJinpin~Pa) d}';p
2/1

which can be written

dyg~ = I {cos(i5, ex) cos(YJ, fJ)+ cos(i5, fJ) cos(YJ, ex)} dyap.
;p

(6)

(7)

Note that dro;; would be that part of dyg~ caused by slip in the i5YJ slip system alone. Since
slip systems are not generaIly orthogonal, slip in other systems contributes to the resulting
incremental plastic strain in the i5YJ system.

Consider now the resolution of the stress tensor within the crystal. Denoting by 'ap

the shear stress in the exfJ slip plane,

(8)

where (;j may vary with position within an individual grain as weIl as from grain to grain
within the unit cube. Taking rap to be equal to the critical shear stress ,~necessary to
produce plastic slip in the exfJ plane, then the incremental mechanical ene;h-dissipation
density during multiple slip can be expressed in terms of this stress. Thus, from equations
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(5), (6), (8), and the symmetry of the stress tensor,

(9)

Defining another microstress state V0 (for which the corresponding shear stresses r:p
on the various slip planes are everywhere less than the critical stress) and proceeding as in
Bishop and Hill [7J, we obtain the principle of maximum plastic work within an individual
crystal grain:

(10)

Bishop and Hill used this principle to deduce normality and convexity conditions for
the yield surface of the crystal in microstress space. Alternately, Lin [28J establishes
normality from a comparison of equations (4) and (8). If we denote by j~p the hyperplane
in Cj stress space corresponding to the rx{3 slip ~ystem, then

(11 )

In terms of the six-dimensional linear vector space spanned by (II, (12, (13, (22, (23,
and (33' the vector gradient VI; of fap has components

VI;.f:,p = (11'1 11/11' 11,II1/12+ I1PII1,2, 11,II1P3+ I1/1I I1,3, 11,2 11112, 11,2"p3+I1/12I1,3, 11,3"p3)' (12)

In single slip, the six incremental "physical" plastic strain components d~~ I' 2d~~2,
2d~f3' d~~2' 2d~~3' d~~3' are, from equation (4),

Thus, the incremental plastic strain vector d~P in the crystal is seen to be normal to the
yield surface in six-dimensional microstress space. The yield surface obviously is convex.

3. MACROSCOPIC STRESS-STRAIN RELATIONS IN THE AGGREGATE

First consider a fine-grained aggregate of elastically isotropic crystals. Before the
initiation of slip in any crystal of the unit cube, the microstress and microstrain fields are
homogeneous and equal to the corresponding fields at the continuum level:

(14)

and

(15)

where (x) indicates an arbitrary point within the unit cube. Thus, the initial yield surface
in macrostress space is the inner bound of the yield surfaces of the individual crystals.
The hyperplane fap, corresponding to the first slip system, is tangent to the yield surface
of the aggregate, and the incremental plastic strain vector dE'P is normal to this plane.
After plastic straining has taken place, the microstress field (ij is no longer uniform:

(16)

where the superscript (s) denotes that part of the stress caused by previous crystal slips.
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In an active slip system a{3, the critical shear stress is

(e) ( ) _ (R)T;p= Top X = noinpjCJij+Top·
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(17)

The first term on the right-hand side of this equation is the active resolved shear stress on
the a{3 plane (from the continuing elastic isotropy of the crystals); the second term is the
residual shear stress resulting from previous plastic slips. By using equations (11), (16),
and (17), the yield hyperplane of the a{3 slip system can be expressed in terms of the macro­
stress state as

(18)

From equation (15), the initial yield surface of the isotropic crystal can be expressed

(19)

We see, by comparing these equations, that, even if the crystal is assumed to harden
isotropically in microstress space (such that T~increasesequally in both active and passive
slip systems, as proposed by Taylor [5J), the macroscopic yield surface cannot simply
expand but must translate and perhaps distort as well. This is caused by the presence of
T~~) in equation (18), and by its variation from plane to plane, as well as by the variation
of both T~ and T~~) from one crystal to another. For isotropic hardening of the crystal,
the critical shear stress is taken to be a function of the sum of slips integrated over the
deformation path:

(c) (e
l (J '\' d )T;p = Tap ~ Yili (20)

with T¥J equal to T~o before the initiation of plastic strain in the crystal. The residual shear
stress T~~) on the plane of impending slipping is a function of the history of plastic deforma­
tion throughout all the crystals of the unit cube.

Consider now the question of normality. The gradient of the yield hyperplane j;p in
the six-dimensional macroscopic-stress space has the components (equation 18).

which are identical with equation (12). In single slip, the incremental macroscopic plastic
strain is, from equation (1),

(22)

where L1 V' is that part of the crystal volume experiencing the incremental slip. Thus, from
equation (4), since in single slip d~~ '= d~~1h,

dE~ = !(noinpi + npinO) dy;p L1 V', (23)

and the six-dimensional, incremental, macroscopic plastic strain vector IS (using
equation 21)

(24)

Hence, this vector dEP
, representing plastic strain in the aggregate but corresponding to

microscopic slip in a single crystal slip system a{3, is normal to the yield surface (yield
hyperplane) in macroscopic stress space.
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For multiple slip in a single crystal, denoting the above plastic strain by d£P(;PI,

dE"P = " d£P(ap) = "V'j:'- (d"- Ll V')L. L. "II I"P .
"p ii1i

(25)

For simultaneous multiple slip in two or more crystals,

dEl} = I d~lj(k)Ll V;k) =1 I L (n"inpj +n,iin"j) dYap(k)Ll V;k)
k k ap

(26)

where the subscript (k) indicates a crystal volume over which slip takes place and
LkAV;k) < 1. Thus, the resultant incremental macroscopic plastic strain vector can be
expressed

(27)

The yield hyperplanes in macrostress space, corresponding to the active slip systems of
those crystals experiencing simultaneous slip, locally bound the domain of elastic response
of the unit cube and intersect at the single stress point (a 11, 0'12' 0'13' ~22, 0'23' 0'33)' Since
the multipliers of the vector gradients of the fap(k) are all positive, the resultant incremental
plastic strain vector lies within the pyramid of normals to these intersecting hyperplanes
(Fig. 2). Thus, from equations (24) and (27), d(p is normal (or within the pyramid of normals)
to the subsequent yield surface of an aggregate of elastically isotropic crystals. This conclu­
sion was stated first by Lin [28].

FIG. 2. Pyramid of normals to intersecting hyperplanes.

Turning attention to a unit cube of anisotropic crystals, the microstress state prior
to the initiation of plastic slip can be expressed as

(28)

The influence functions !/Jijkl(X) must be determined from an elastic solution for the
nonuniform microstresses in the inhomogeneous cube, which is acted upon by the macro­
scopic stress state akl applied as surface tractions. For impending slip in the rxfJ slip system
of one crystal within the aggregate,

(29)
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Thus, in six-dimensional macrostress space, the equation of the initial yield hyperplane is

f a - t/J a (e)O - 0- - n ·n(3. ··k/(Jkl- r - - .a(3 al J IJ a(3
(30)

The incremental macroscopic plastic strain, expressed in terms of the plastic slip dy;p,
is still given by equation (23). From a comparison of equations (23) and (30), we see that
the macroscopic plastic strain vector and the vector gradient off~ in macrostress space
will not coincide unless t/Jijkl = bi/)jl (e.g., Cix) = (JZ). This latter condition is assured if
and only if the crystals are elastically isotropic. Thus, for an aggregate of anisotropic
crystals, d£P is not necessarily normal to the yield surface in macrostress space even though
the unit cube may be macroscopically (statistically) isotropic. This observation relating to
normality was also first made by Lin [28].

4. THE PRINCIPLE OF MAXIMUM PLASTIC WORK

Consider again an aggregate of elastically isotropic crystals. Let N denote the total
number of slip systems throughout all the crystals of the unit cube, and let n denote the
number of possible slip systems which can be activated by the macroscopic state of stress (Jij'

Then, from equation (18),

(31 )

for each of the n slip systems r:x.f3. Choose another stress point (J0 in macrostress space,
lying within the elastic domain or in one of the bounding hyperplanes which constitute
the yield surface of the aggregate. Then by definition,

n ·n .(J'!'. < r!.':..i - r(R)
a, (3J IJ - a(3 a(3 (32)

for all the N slip systems, and thereby for each of the n hyperplanes for which equation (31)
is satisfied. Thus, subtracting equation (32) from equation (31),

(33)

for all n. This equation is a necessary step in the proof of maximum plastic work in the
aggregate. From equation (26) and the symmetry of the stress tensor (Jij, the incremental
macroscopic plastic work is

(34)

(35)

where the total summation is taken over the n active slip systems. The incremental plastic
work done by the stress state (J0 on the incremental plastic strains d£fj is

dWP' = *d P - '\''\' *d - AV'- (Jij £ij - L, L, n ai n (3j(Jij Ya(3(kj L.l (k)'
k ;p

Subtracting,

(36)

As the inequality of equation (33) is satisfied for all n of the intersecting yield hyperplanes,
and as the multipliers in equation (36) are nonnegative, we have

(37)
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(38)

which is the principle of maximum plastic work in the unit cube, expressed in terms of
macroscopic stress and plastic strain.

The first statement of a principle of maximum plastic work was given by Hill [34, 35J
for a rigid-plastic continuum, assuming normality as a starting point. Bishop and Hill [7J
derived a principle of maximum work for a single crystal (equation 10) and for an aggregate
of crystals, again neglecting the elastic portion of the strain, and established normality as
a consequence (rather than a hypothesis) for a rigid-plastic polycrystalline material.
Equation (38) represents an extension of the principle of maximum plastic work to an
aggregate of plastic, elastically isotropic crystals.

Convexity of the aggregate yield surface in macrostress space follows from equations
(33) and (21). Thus

(39)

for all intersecting hyperplanesf;p at stress point (Jij' Convexity also can be concluded for
an aggregate of crystals having anisotropic elastic properties from equation (30), since the
elastic domain in macrostress space is the interior region bounded by the yield hyperplanes
f;jj. Thus, equation (39) holds for anisotropic crystals as well. Equation (38), however, does
not in general hold (for the model assumed herein) since the incremental plastic strain
vector is not strictly normal to the aggregate yield surface for elastically anisotropic
crystals. If one neglects the effects of the elastic strains, then of course both normality and
Bishop and Hill's principle follow.

5. A COMPARISON WITH RESULTS FROM CONTINUUM
PLASTICITY THEORY

If we rewrite equation (27) as a sum over the n possible slip systems at stress point (Jij,

then

(40)

"

Taking the step (admittedly a long one) of identifying the yield hyperplanes in this equation
with the independently acting loading surfaces of the continuum plasticity theories of
Koiter [36J and Sanders [37J, we see that equation (40) parallels, in form, Koiter's equation

(41)

for n intersecting yield surfaces (specialized to planes by Sanders), where the Gn are general
scalar functions of stress and plastic strain. Since equation (41) is a generalization of the
equation of small plastic strains, which is derivable for a continuously smooth (regular)
yield surface ffrom Drucker's stability postulates [26, 38J, it is of interest to determine a
possible relation between equation (40) and the consequences of Drucker's postulates.
These consequences are three, which can be written

(42)
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(43)

where (1t is any stress point lying within or on the yield surface, as before. Equation (43)
is the condition of linearity, which can be deduced from Drucker's extended postulate of
stability [38, 39]. This condition implies a smooth loading surface and will no longer be
considered. Equations (42) imply convexity and normality, the first of which is identically
the principle ofmaximum plastic work shown to hold for the aggregate ofisotropic crystals.
The second of equations (42) obviously is satisfied by equation (24) corresponding to a
point of single slip. To consider the more general case of simultaneous, multiple slip
(equations 25, 27, or 40), we proceed as follows. For two intersecting hyperplanes f-;p"
!off2 at macrostress point (1ij (depicted graphically in Fig. 3 as a projection on the n-plane
in principal macrostress space), let the loading path be such that dO' . °1 > 0 and dO' . n2 < 0,
where oland O2 are unit-normals to the hyperplanes. Then the loading condition proposed

U,I

~IIAUI
FIG. 3. Aggregate yield surface in the :rr-plane.

by Koiter [36], if applied to equation (40), would require that d£P be in the direction 0 1 ,

while the second of equations (42) would require only that d£P lie in the interval bounded
by 0 1 and 0, where n is normal to dO' (i.e., dO'· 0 = 0). This relation was pointed out for
equation (41) by Bland [40]. In the case of equation (40), if we assume incremental slip in
both systems and take the scalar product of dO' and d£P(ap2) (using equation 23), then

(44)

Combining this equation with the total differential of!ali2 (from equation 18), we obtain
the relation

d1f- d (R) d (e)
~"P2 < !"P2 - !-;P2' (45)

Applying Prager's condition of continuity [41] to the rt.f32 slip system, dfap2 must equal
zero, from which it follows that

(46)

Thus, when dO'· V!ali2 < 0, the increment in residual shear stress in the rt.f32 slip system
must exceed the increment in critical stress if slip is to occur. Taking the scalar product
in the af3 1 system, we find d!~~~ < d!~7L. Therefore, in the case of dual slip and isotropic
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hardening within a single crystal volume AV' (such that dr~ = dr~ = dr(CI)
afJ, all, .,

(47)

Adding the two scalar products yields

dO' . d£P == dO'dEfj = (dr(e) (48)

(49)

(50)

(51)

where all terms on the right side of the equation are positive. To satisfy Drucker's second
condition (equation 42) would require that

dT(R) -dr(e,
d afJ2 d

Y;:jf, > -d(~d (R) Y;:jf,·
r - rap,

Assuming there exists a range of directions of dO' (from 0 = 0 1 toward 0 = O 2) for
which d£P(afJ2 ) = 0, then df;:jf2 ~ 0 and dr~~~ ~ dr(e) in this interval. If dO' is conceived as
being rotated counterclockwise from a direction that yields dual slip toward this interval
corresponding to single slip, we must have dr~~; -dT(e) -+ 0 as dfP(afJ2) -+ 0, while
dT(e) - dT~~)l remains positive and nonvanishing. The right side of equation (49) then
approaches zero and the inequality is satisfied. Similarly, assuming a continuously changing
scalar product, the inequality is satisfied as dO' is rotated clockwise toward the direction
o = D 2 , since it is strongly satisfied there. (The righthand side is identically zero.) Thus,
although this argument is necessarily limited in generality, it seems reasonable to conclude
that Drucker's second condition, conceived in terms of a continuum, should apply as well
to an aggregate ofisotropic crystals. However, considered solely in terms ofthe requirement
that dfP must lie within the pyramid of normals, we see that it is a mathematically sufficient
but not strictly necessary condition.

Turning our attention to an aggregate of strongly anisotropic crystals, we find that
no evaluation of theoretical results-in terms of the continuum stability postulates-~anbe

made. As can be seen from Section 3, the incremental plastic strain vector cannot be
related in a simple manner to the yield hyperplanes in macrostress space, owing to the
elastic inhomogeneity of the unit cube, and the normality condition does not hold. On this
point it is interesting to recall a relatively recent paper by Green and Naghdi [42J, wherein
they develop a quite general theory of plasticity (although linear in the sense ofequation 43)
based upon the thermodynamic foundations and fundamental principles of continuum
mechanics. For the case of isothermal, small plastic deformations, as considered here,
Green and Naghdi's final equations can be stated:

(
iJf )dEfj = Je!3ij ;:;-- dO'kl

uO'kl

with the additional constraint on the symmetric tensor {iij

f3kl(O' kl Po ~.. ~) 2 0
UEkl

where U is the internal energy per unit mass and Po is the mass density. In Green and
Naghdi's theory the tensor !3kl is not required to equal the gradient of the yield surface f
in stress space, from which neither convexity nor normality conditions necessarily follow.
Thus, there is a parallel within continuum plasticity theory for the theoretical deviation
from normality predicted for an aggregate of strongly anisotropic crystals.
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6. SUMMARY
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Certain general theoretical results have been established for the overall macroscopic
(continuum) behavior of a polycrystalline solid in which the sole mechanism of inelastic
deformation is plastic slip within individual crystal grains. For an aggregate of isotropic
crystals, it has been shown that the macroscopic incremental plastic strain vector is normal
(or within the pyramid of normals) to the yield surface in six-dimensional macrostress
space, reaffirming the conclusion of Lin [28]. In addition, the aggregate yield surface has
been proved convex, from which the principle of maximum plastic work is extended to
small plastic strains in an elastically isotropic polycrystalline solid. The aggregate equations
are compared with equations from small strain continuum plasticity, based upon Drucker's
stability postulate and the theory of independently acting loading surfaces. In the case of
an aggregate of anisotropic crystals, the difficulty of deducing normality in macrostress
space is discussed.
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A6cTpaKT-Pa60Ta I1MeeT ueJlblO onpe,lleJlI1Tb 06ulI1e xapaKTepl1CTI1KI1 3aBI1CI1MOcTeit CnJlOIUHOH Cpe,llM
Tl1na Hanplllf(eHtle-nnaCTl1'lecKali ,lle$opMaUl1l1, I1CXO.llll H3 3aKOHa ImaCTI1'fecKoro CKOnblf(eHl1l1 IllMI1,llTa
B HH.llI1BH,llyanbHbIx, KpI1CTannl1'feCKHX 3epHax. )];nll :)1oro BHOBb nO,llTBeplf(,llaIOTCll, nyTeM TO'lHOrO
BbIBO,!l,a, HeKoTopbIe TeopeTH'feCKHe pe3ynbTaTbl, nony'leHHble JlI1HOM. 0606IUaeTc.II npHHUHn MaKCHMa"
nbHoH nnaCTH'IecKoH pa60Tbl Ha cny'faH MaJlblX, ynpyro-rrnacTH'IeCKHX ,lle$opMaUHit B H30TponHoH
nonHKpHCTannH'feCKOH cOBoKynHOCTH. nOKa3aHo. 'fTO MaKpOCKOnH'IecKHit nOCTeneHHO HapaCTalOIUHH
BeKTOp rrnaCTH'feCKOH .lle<!>opMaUI1H no e,llHHue 06'beMa H,lleanbHO 3epHHcToro Tena, .IIBn.lleTCli cOBepIUeHHo
HopManbHbIM K nOBepxHocTH Te'leHHll, B npocTpaHCTBe MaKpOHanplllf(eHHit, TonbKO TOr,[la. KOr,lla
HH,llHBH,llyanbHbIe KpHCTaJIJlbI ynpyro H30TponHbI. CpaBHI1BalOTCli pe3ynbTI1pYlOI1.\He ypaBHeHI1.11 ,llnll
nOJIHKpHCTanJlH'feCKI1X Ten c ypaBHeHHlIMH, BblTeKaIOI1.\HMH H3 HeKOTopbIX nocTynllToB YCTOH'fHBOCTH H
TepMO,llI1HaMH'feCKHX OCHOB TeopHH nnaCTH'IHOCTH cnnolliHoli Cpe,llbI. 06CYJK,llaIOTC.II 06IUHe CBOHCTBa
nO,llo6I1.11.


